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to USArray imaging of the 410-km discontinuity
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S U M M A R Y
We develop a generic method to appraise the reliability of wavefield imaging methods and
use it to validate some novel observations on the 410-km discontinuity. The core concept of
the error appraisal method is to produce a simulated data set that replicates the geometry of
the real data. Here we implemented two simulation methods: (1) flat layer primary P to S
conversions, and (2) a point source scattering model for P to S conversion data based on the
Born approximation and ray theory propagators. We show how the approach can be extended
for any simulation algorithm. We apply this new approach to appraise recent results using
a 3-D, three-component P to S conversion imaging method applied to data collected by the
USArray. Multiple metrics show that the amplitude of P to S converted energy scattered from
the 410-km discontinuity varies by 18 dB with a systematically lower amplitude in an irregular
band running from Idaho through northern Arizona. In addition, we observe strong lateral
changes in the ratio of amplitudes recovered on the radial versus the transverse component.
We compute point resolution functions and a checkerboard test to demonstrate we can reliably
recover relative amplitudes with a lateral scale of the order of 200 km and a vertical scale
of approximately 10 km. Irregular coverage locally distorts the amplitudes recovered in the
checkerboard, but a 156 km scale checkerboard pattern is recovered. Flat layer simulations
show we can recover relative amplitudes to within a range of 1 dB and the reconstructed
transverse to radial amplitude is everywhere less than 0.1. A model with north–south oriented
ridges with a 3◦ wavelength and 12.5 km amplitude shows of the order of ±6 dB amplitude
variations and small, but clear correlation of the transverse/radial amplitude ratio topography
in the model. Finally, we model the 410-km discontinuity as a rough surface characterized by
variations in amplitude and depth derived from the USArray data. The rough surface model
recovers the scale of the observed amplitude variations, but does not explain the observed
large variations in transverse component amplitudes imaged by the USArray data. The results
indicate the 410-km discontinuity is definitely not a single interface separating isotropic media.
We argue that it is likely better viewed as a rough surface with a structural fabric that creates
anisotropic behaviour in some places.

Key words: Mantle processes; Theoretical seismology; Wave scattering and diffraction;
North America.

1 I N T RO D U C T I O N

In the past decade scattered wave imaging methods have emerged
as a common tool for imaging Earth structure in the lower crust
and upper mantle. Two technical developments have made this pos-
sible. First, it was recognized in the 1970s that three-component,
teleseismic P-wave data could be deconvolved to produce an ap-
proximation of the impulse response for P to S conversions (scat-
tering) commonly called receiver functions (Vinnik 1977; Langston
1979). Second, in the late 1990s sufficiently dense portable array
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data sets became available that full wavefield imaging methods
became feasible. Dueker & Sheehan (1997) introduced the idea
of common conversion point (CCP) stacking of receiver function
data. CCP stacking is properly viewed as analogous to common
midpoint (CMP) stacking in seismic reflection imaging (e.g. Pavlis
2003). The CMP analogue is a useful insight to understand why a
series of seismic migration methods were quickly adapted to this
variant of reflection processing. Many have used a form of sim-
ple ray backprojection (e.g. Dueker & Sheehan 1998; Niu et al.
2004; Eagar et al. 2010) where data are projected along ray paths
and the final image is produced by a simple binned stack in a
uniform grid defined on a 2-D section. Variants of Kirchhoff migra-
tion (Sheehan et al. 2000; Levander et al. 2005), finite difference
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Imaging appraisal 1241

methods (Wilson et al. 2004), and Gaussian beam migration
(Nowack et al. 2006) have been applied. Here we utilize results
of a form of migration-inversion we call plane wave migration
(Poppeliers & Pavlis 2003a; Pavlis 2011b).

Although scattered wave imaging methods have emerged as a
core component of passive seismic array imaging, there have been
limited attempts at appraising the reliability of the results. The only
standard method that has been used is the bootstrap error estima-
tion Efron (1979) first introduced for application to this problem
by Dueker & Sheehan (1997). This is a purely statistical method
that measures variations between data samples falling in a com-
mon CCP bin. It provides useful information, but does nothing to
address a long string of limitations that are not really statistical
in nature. Examples include: (1) scattering from unresolved small
structure; (2) scattering from dipping interfaces not resolved with
CCP bin spacing permitted by the data; (3) body wave to surface
wave scattering; (4) multiples and (5) deconvolution noise. The first
contribution of this paper is a general methodology for appraising
scattered wavefield imaging. The basic idea is to construct a 3-D
model of the subsurface and generate an exact simulation of every
waveform that defines a data set. That data set is then run through
the same imaging algorithm whose output we aim to appraise and
the results are compared quantitatively. That method is generic and
independent of the choice of how one simulates the real data. We
also introduce a practical method for simulation of large data sets
based on the Born approximation and the asymptotic theory of
Beylkin & Burridge (1990). This method has a number of simplify-
ing assumptions, but is less computationally demanding than what
might be considered the ultimate simulation method: 3-D, elastic
wave propagation models. We claim this method can be a useful
component of the toolkit of colleagues doing this type of seismic
imaging.

We demonstrate the utility of our error appraisal approach to
evaluate new results from the USArray related to the 410-km dis-
continuity (hereafter referred to as the 410). The 410 is a global
feature that marks the top of the region of the mantle commonly
called the transition zone. It is defined in all modern, radially sym-
metric earth models by an upward step in P- and S-wave velocity
around a depth of 410 km. A large literature exists of papers using
seismic methods of various forms to investigate the 410 (for a fairly
recent review see Helffrich 2000). A key reason why hundreds of
papers have been written about the 410 and it’s sibling the 660-
km discontinuity is that both are commonly linked to polymorphic
phase changes in olivine which mineral physics data show have sig-
nificant temperature dependence (e.g. Ringwood 1975) . As a result
a major theme in many papers on the topic is defining the depth
to the top of the 410 and/or the 660-km discontinuity in order to
illuminate variations in mantle temperature (Helffrich 2000).

Although hundreds of papers have been written about the 410,
our results are unique. The primary reason for this claim is that
no previous result on the 410 has the combined 3-D resolution
and lateral coverage of this study. This is achieved with the com-
bination of two components: (1) data from the largest seismic
array ever deployed called the Earthscope Transportable Array
(http://www.earthscope.org), which we will henceforce call simply
the USArray and (2) the fully 3-D, vector wavefield imaging method
applied to data from the USArray (the plane wave migration method
of Pavlis 2011b). The comparable result is a recent paper by Cao &
Levander (2010). However, their coverage and the volume of data
they used is significantly smaller, the imaging methodology is less
sophisticated, and they provide no error appraisal of any kind to
evaluate their results. We use the error appraisal methods described

here to evaluate our results on imaging of the 410. Our results
indicate the 410 is anything but a simple interface with gently vary-
ing topography. The high resolution, 3-D images produced by the
plane wave migration method show that the 410 has wildly variable
properties in space. Our error appraisal methods give a quantitative
validation that these variations are real. In this paper, we touch only
the surface of a potentially rich mother lode of new information the
USArray may yield on the nature of the 410 using these new data
and methods.

2 M O D E L L I N G T H E O R E T I C A L
F R A M E W O R K

2.1 Using forward models to appraise imaging results

The strategy we advocate here is necessary because of a funda-
mental difference between passive array data and seismic reflection
data. It is not commonly appreciated that one of the secrets to the
quality of modern seismic reflection imaging is the controlled, reg-
ular coverage of shot and receiver geometry. This means that unless
there is extreme structure (e.g. salt) to drastically distort the incident
wavefield the illumination within the study area (volume) is very
regular. It also implies that although resolution is never perfect it is,
by design, very uniform. This is not at all true of teleseismic P to S
conversion imaging. The following all produce irregularities in the
results whose impact we need assess to avoid erroneous interpreta-
tions: (1) irregular station coverage, (2) variable data quality (SNR)
due to order of magnitude changes in source output amplitude and
(3) the location of sources are not controlled but are at the mercy
of where earthquakes occur on the planet during the data recording
period. These factors produce irregular resolution characteristics
as they do in seismic tomography, but with very different conse-
quences. The error appraisal methods introduced here are aimed at
appraising these irregular resolution characteristics.

The approach we advocate is effectively a form of hypothesis
test. The approach can be thought of as four steps.

(i) We construct a model, m(r), of the subsurface.
(ii) We select a synthetic seismogram generator capable of sim-

ulation of any seismogram in the existing data set using m. Use
that generator to make a simulated copy of every seismogram in the
data set. An element of this step worth noting but which we have not
tested here is the source wavelet problem. That is, real teleseismic
body waves have a common, unknown source wavelet that has to
be deconvolved from the data. A complete simulation should apply
variable source wavelet to each seismogram.

(iii) Pass the simulation data through exactly the same processing
sequence as the real data. This should include the deconvolution pro-
cess to properly simulate potential deconvolution noise. We have not
simulated the deconvolution process in this paper because the data
we used [Earthscope Automated Receiver function Survey (EARS)
(Crotwell & Owens 2005; Crotwell 2007)] made this intractable.

(iv) Compare the simulated data image to m and (optionally) the
image produced from real data.

This approach is generic, but we now describe the specific im-
plementations we have used in this paper to evaluate the nature of
scattering from the 410.

2.2 Radially symmetric model

The first model we have used is the same as that described by
Pavlis (2011b). We prescribe a layer boundary depth and assign
a constant, angle independent amplitude for P to S conversions
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from that horizon. Timing relations are computed from a speci-
fied radially symmetric earth model using the standard delay time
equations for a spherical earth (e.g. Stein & Wysession 2003) and
synthetic seismograms are computed by convolution with a speci-
fied wavelet. Neglecting multiples, geometric spreading corrections,
and angle-dependent P to S conversion effects is, of course, unre-
alistic. Nonetheless, we show below that this provides a valuable
first-order model for evaluating our results on the 410.

2.3 Point source model

The foundation of this method is a point source scattering model
for elastic media based on the Born approximation. We use this as
a basis for impulse, migration response estimates and to simulate
scattering from a continuous surface by integration of point source
solutions over a particular surface. It is ideal for the former, but may
be less than optimal for the later. Continuous surface modelling may
be more appropriately modelled by the Kirchhoff approximation as
described by Bostock (2002), who provides a valuable comparison
of results using the Born and Kirchhoff approximations. We also
note that Shearer et al. (1999) used a comparable modelling method
to that we developed to model SS precursors. SS precursors are un-
derside reflections observed on transverse component seismograms.
As a result they were able to use a simpler, isotropic scattering
model. P to S conversions, which are the focus here, require a more
complicated scattering model. The purpose of this section is to re-
view the theoretical foundations and limiting approximations that
are the basis of the method we developed.

The point source elastic scattering equations we use are found
in the standard seismology textbook of (Aki & Richards 2002, chap-
ter 13). That original work uses the representation theorem and the
Born (single scattering) approximation to show that a perturbation
of medium properties can be expressed as a set of body force equiv-
alent forces that radiate as secondary sources. The theoretical un-
derstanding of this approach was extended by Wu & Aki (1985a,b)
who recognized this method was valid only as an approximation of
Rayleigh scattering. That is, the method we are using here is valid
only when the length scale of the scattering body, L � λmin, where
λmin is the wavelength of the highest frequency present in incident
wavefield.

The point source (Green’s function) scattering theory assumes
a reference medium defined by a density field ρ0(x) and elastic
properties described in the most general form by the compliance
tensor field c0

i jkl (x). The actual medium is assumed to be related
by small perturbations from the reference medium. We define the
perturbation operator

�Llp = �ρ
∂2

∂t2
δlp − ∂

∂xm
�clmpq

∂

∂xq
, (1)

where �ρ = ρ − ρ0, �clmpq = clmpq − c0
lmpq .

The foundation of this paper is a later paper by Beylkin & Bur-
ridge (1990). Combining this with additional insights from Weglein
et al. (2003) the theoretical foundation of this paper is the following
general equation for the Born approximation in an elastic medium

�G jk(s, 0; r, t) ≈
∫ ∫ ∫

V

(−�LlpG̃ jp

)
�τ ĜkldV

= −
∫ ∫ ∫

V

[
�ρ

∂2G̃ jl

∂t2
�τ Ĝkl

−
(

�clmpq
∂G̃ jp

∂xq

)
�τ

∂Ĝkl

∂xm

]
dV,

(2)

where �G jk = �G jk(s, 0; r, t) is the scattered wave Green’s func-
tion in the k-direction at receiver position r and time t from a point
force applied in the j-direction at the position s and time 0. Here G̃ jp

is the Green’s function for the wavefield propagating from source to
scattering point in the reference media and Ĝkl denotes the Green’s
function for the wave propagating from scattering point to receiver
in the reference media.

Although eq. (2) is an intermediate step for what we have ac-
tually implemented, we include it in this paper to emphasize two
points. First, eq. (2) is a general result for the Born approximation
in an elastic medium that provides physical insights not universally
understood. The G̃ terms are (Green’s function) propagators that
define wave propagation from a point source at position s and with
origin time 0 to the position of an inhomogeneity at position x.
The scattered wave amplitude is scaled by the strength of the per-
turbation at position x defined by �ρ and �clmpq. The scattered
wave created by a mass inhomogeneity, �ρ, radiates like a point
force oriented in the direction of the particle motion of the incident
wavefield at x. Elastic property inhomogeneities radiate scattered
waves like double couple (moment tensor sources). To clarify this
we define

�m jlm = �clmpq
∂G̃ jp

∂xq
(3)

as the equivalent moment rate tensor at the scattering point x in-
duced by the incident wavefield created by the source at position s
and time 0. The Ĝ terms then describe radiation and propagation
from the scattering point, x to the receiver position r. Ĝkl is the
impulse response (Green’s function) for a point force applied in the
l-direction at position x and recorded in the k-direction at the re-

ceiver position r. Similarly,
∂G̃ jp

∂xq
is the propagator for the equivalent

moment rate tensor at position x and recorded at the receiver posi-
tion r. Both terms are ‘illuminated’ by the the incident wave and the
time base (the convolution, �τ symbol) is defined by the instanta-
neous acceleration (�ρ term) and instantaneous stress (equivalent
moment tensor term) at the scattering point at x. Note that the total
scattered wavefield is the superposition of all first-order scattered
waves within the volume V, which is the reason for the integral
over V.

The second reason for including eq. (2) in this paper is that it is
a more general result than the simplified version we describe next.
The ideas of this paper could be extended using eq. (2) using either
anisotropic elastic properties or more sophisticated propagators, so
we give the more generic eq. (2) to help others move beyond what
we give here.

Beylkin & Burridge (1990) derive the specialized forms of eq.
(2) based on two additional simplified assumptions: (1) isotropic,
elastic reference media and (2) the Green’s functions are computed
by ray theory. They derive the following term for P to S conversions

�G jk = ∂2

∂t2

∫ ∫ ∫
V

f P S(θ P S) ÃP
j ÂS

klβlδ(t − ˜φP − ˆφS) dV, (4)

where f PS is the scattering potential we define as

f P S
(
θ P S

) = −ρ0

[
�ρ

ρ0
sin θ P S + �μ

μ0

cS

cP
sin 2θ P S

]
(5)

with θPS defined as the angle between the incident P-wave ray
path and the scattered S-wave ray path illustrated in Fig. 1(a). ÃP

j

and ÂS
kl are amplitude terms computed by ray theory while the φ

terms defined traveltimes. Thus, the term δ(t − ˜φP − ˆφS) defines the
scattered wave arrival time computed by ray theory for an impulse in
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Figure 1. Point source scattering model geometry. Panel (a) illustrates coordinate system defined by Beylkin & Burridge (1990) and applied in this paper. The
figure is in the plane formed by the incident P wave and scattered S-wave ray paths. Panel (b) shows the radiation pattern created by the density inhomogeneity
term which acts as a point force along the direction of the incident P wave. Panel (c) shows the complementary radiation pattern for a shear modulus
inhomogeneity, which radiates as a double couple source oriented as illustrated. It may be helpful to think of this as a consequence of a uniaxial stress field
applied to the inhomogeneity by the incident P wave.

the j-direction at time 0 and position s. φ̃P is the P-wave traveltime
from s to x and φ̂S is the S-wave traveltime from x to r.

Eq. (4) can be simplified for the teleseismic P-wave problem
by assuming the entire volume is illuminated by a P wavefield
with source–time function S(t). This allows us to drop the vector
dependence in the ÃP term and write the following closed form for
the P to S scattered wavefield at position r

uk(s, r, t) = S �τ �Gk

=
∫ ∫ ∫

V
f P S(θ P S) ÃP ÂS

klβl
∂2 S

∂t2
(t − ˜φP − ˆφS)dV .

(6)

In this theoretical framework we can compute the scalar ampli-
tudes, ÃP and ‖ÂSβ‖ using standard geometric spreading theory
relations for a radially symmetric earth model (e.g. Stein & Wyses-
sion 2003, p. 187). The matrix ÂS

kl should be understood as a product
of a scalar geometric spreading amplitude factor and a coordinate
transformation. Liu (2011) shows the form of this transformation
for a radially symmetric earth model which is a specialization of a
comparable transformation described in Pavlis (2011b). The trans-
formation matrix accounts for rotation of the converted S to maintain
a polarization perpendicular to the ray path. The overall amplitude
computed for a point scatter at x recorded at r is the product of three
amplitude terms: (1) geometric spreading loss, AP, for the incident
P wave from s to x; (2) the angle-dependent scattering term f PS and
(3) a geometric spreading term for the scattered Swave, ÂS .

In our implementation of eq. (6) two variations are necessary.
First, we are modelling data produced by conventional, single-
station, receiver function estimated using the iterative deconvo-
lution method of Ligorria & Ammon (1999) as implemented for
the Earthscope Automated Receiver Survey (EARS) project. That
single-station method autoscales the amplitude at every station so
the actual output of the inverse wavelet and the recorded vertical
signal has unit amplitude. For this reason we drop the ÃP term
assuming any such variations in the illuminating wave amplitude
across the array is absorbed by the deconvolution process. Finally,
the source–time function, S, in eq. (6) needs to be understood as the
actual output of the deconvolution operator. This is actually some-
what ill defined for the iterative method, but we assume the actual
output is the same as the Gaussian pulse convolved with the im-

pulse response computed in that method. Interestingly enough, if S
is Gaussian the effective wavelet, ∂2 S

∂t2 , is the classic Ricker (Mexican
Hat) wavelet commonly used in seismic reflection processing.

3 U S A R R AY I M A G I N G O F T H E 4 1 0

We examined the 410 using the same image volume used by Pavlis
et al. (2012), which is an update of the original plane wave migration
result given by Pavlis (2011a). For details of this methodology the
reader is referred to the original theoretical papers for the plane
wave method Poppeliers & Pavlis (2003a,b) and the recent paper by
Pavlis (2011b) which describes his implementation of the full 3-D
algorithm. Furthermore, a novel element of the method described
by Pavlis (2011b) is that it provides a vector estimate of scattering
potential at each image point. It accomplishes this by computing
a rotation matrix that is different for every three-component data
sample. We would argue this is preferable to the more ambitious
objective of using the data to estimate material properties of each
point in the media as it requires no assumption about the nature of
the target and is less demanding on the data. This can be viewed as
analogous to seismic reflection imaging where most processing aims
to produce a ‘picture’ of the surface as opposed to reconstructing a
quantitative model of P- or S-wave velocities.

Fig. 2 illustrates estimated depth to the 410 while Figs 3 and 4
display a series of figures quantifying the relative amplitudes of the
measured amplitude of P to S conversion signal generated by the
410. These maps were produced by an amplitude attribute analysis
method we developed for this paper. All measurements are made
in a fixed depth window. We experimented with a range of scales
for the depth interval ranging from 25 to 75 km. All maps like Figs
2–4 in this paper use a depth range of 385–435 km (50 km width).
A novel feature of the plane wave migration method implemented
by Pavlis (2011b) is that it is a full three-component method. For
the EARS data, however, the vertical component is zeroed so only
radial and transverse images (Fig. 3) are relevant. Because we have a
vector image we also compute sample-by-sample three-component
amplitude at each point in the image volume using the L2 norm of
each 3-D-vector sample of the image. We will henceforth refer to
this as 3C amplitude. For each component (radial, transverse, and
3C amplitude) we compute the following amplitude metrics on a
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Figure 2. Topography of the 410 estimated from USArray data and plane wave migration. Both figure display depth to the top of a peak amplitude with the
colour scale shown at the bottom of the figures. Depths are inferred from migrated P to S conversion data using AK135 and no crustal corrections using a
50 km depth window and a 100 km radius smoother. Panel (a) is depth inferred from peak amplitude on the radial component image while (b) shows the peak
inferred from total amplitude on all three-components.

Figure 3. Radial and transverse relative amplitude maps of P to S conversions from the 410. Maps were produced by using the mad amplitude metric applied
over a 50 km depth range centered at a depth of 410 km and using GMT’s (Wessel & Smith 1995) blockmedian procedure with a 100 km radius. Amplitudes
are relative to the median computed from all point measurements made on each component. In all cases null parts of the original image with no data coverage
have been excluded from the analysis. Colours are scaled by amplitude in dB with the colour map shown at the bottom of the figure.

uniform mesh of points centered at a depth of 410 km and spanning
the entire image volume: (1) rms

Arms =
√√√√ Nz∑

i=1

d2
ik, (7)

(2) median absolute distance (mad)

Amad = median{|dik |, i = 1, 2, · · · Nz}, (8)

and (3) the maximum amplitude of all |dik|. In all cases Nz is the
number of samples in the vertical range being analysed (50 points
at 1 km intervals in all cases give here) and k is component number
(1, 2 or 3 for radial, transverse, or three-component measures). We

use the depth computed at the maximum as a measure of the depth.
In practical terms, the maximum amplitude will have the highest
variance while the mad will have the least variance (it is commonly
used as a robust measure of spread). The rms estimate is between
these extremes. This can be seen in Fig. 4, which compares these
three measures for three-component amplitudes.

Point measurements of all of these attributes have significant
variance, particularly the depth and amplitude estimated from peak
values. For this reason the maps in these figures are smoothed with
the blockmedian procedure in GMT (Wessel & Smith 1995). This
is a reasonable dimension because the Gaussian width parameter is
approximately this width at the depth of the 410 with the Fresnel
zone width method Pavlis (2011b) used to create this image. The
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Figure 4. Comparison of different metrics used to compute amplitudes of P to S conversion from the 410. Details of the maps are as described in the caption
to Fig. 3 and the colour scale is identical. Here the amplitudes are all computed from the 3C data.

utility of this is demonstrated in Fig. 4 where we see a compari-
son of all three metrics applied to the 3C amplitudes. That figure
demonstrates patterns that are stable and independent of the metric
used. On the other hand, comparison with Fig. 3 shows the 3C maps

are very different than that computed from the radial and transverse
components. This is a important new observation. One of the ob-
jectives of our error analysis is to understand how much of this is
believable. An important, final observational result shown in Fig. 5

Figure 5. Transverse to radial amplitude ratio of the 410. This map was computed from the maximum amplitude metric (standard 385–435 km depth window)
for the transverse component divided by the maximum amplitude on radial component. We chose to use a 200 km radius blockmedian smoother for this figure
due to the greater variance that is inevitable in dividing one measured quantity by another. The dashed lines shows the map projection of the 3-D, kinematic
model of the Farallon slab introduced by Pavlis et al. (2012). This prediction differs only slightly from the original model for this geometry of Dickinson &
Snyder (1979). Pavlis et al. (2012) show that body wave tomography models all show a fast wave speed north of the dashed line and slower speeds at the same
depth south of this line consistent with the kinematic model they describe. The high transverse to radial ratio north of the slab edge tracks this trajectory closely
to southern Colorado. We note that the model predicts that the top of the Farallon slab has passed through the 410 at approximately the same location.
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helps clarify the discrepancy between the radial, transverse, and 3C
amplitude maps. This figure shows that the recovered amplitude on
the transverse component is, in many areas, nearly as large as the
radial component amplitude. As we will show quantitatively in a
moment, this observation is completely inconsistent with a single
interface with smooth topography.

4 R E S O LU T I O N A NA LY S I S

4.1 Migration impulse response

The concept of the migration impulse response (Schneider 1978) is
a standard method of appraising the resolution of seismic reflection
images. The equivalent for teleseismic P to S imaging, however,
has not been defined. One reason is that the irregularities of pas-
sive source data make this a more difficult property to characterize
or even compute. One of the original motivations for developing
the point source, Born approximation modelling method was, in
fact, to address this issue. We would argue that the proper mea-
sure of migration impulse response for P to S conversion data is
to use the point source modelling method for a widely spaced ar-
ray of point sources and illustrated in Fig. 6. We emphasize that
the image illustrated there was produced by a simulation that ex-
actly replicates the (irregular) real recording geometry. This analysis
demonstrates three features of the resolving power of this method
at the 410. First, the vertical resolution is controlled exclusively by
the bandwidth of the signal used in the imaging. Here this sim-
ulates the real EARS data where the Gaussian pulse has a width
of approximately 1 s, which translates to a depth scale of approx-
imately 10 km. Second, the horizontal scale is controlled by the
spatial Gaussian filter used in the pseudo-station, plane wave stack-
ing method Pavlis (2011b). For these data that scale is of the order
of 150 km. Finally, the resolution functions are not uniform as illus-
trated by variations in the detailed geometry of the isosurfaces seen
in Fig. 6. This is in contrast to seismic reflection impulse response
functions that tend to be nearly constant at a given depth (Yilmaz &
Doherty 1987).

4.2 Lateral resolution test

The checkerboard test has become a standard method for apprais-
ing resolution in seismic tomography methods. In that context a
checkerboard test constructs a velocity model with boxes of a spec-
ified size and velocities inside these boxes are set to alternating plus
and minus perturbations. The checkerboard model is then used to
construct synthetic data matching the data set being analysed and
these data are then run through the same inversion procedure as the
real data. Fig. 7 illustrates our equivalent for appraising our results
at the 410. It provides a complementary single-picture image to the
point source image illustrated in Fig. 6. We make three inferences
from Fig. 7. First, it clarifies the overall irregularity in resolving
power noted above in a single figure. Second, it correctly illustrates
that the results are unreliable near the edges of the coverage and,
as expected, completely insensitive to areas outside that coverage.
Finally, a more subtle result is that the overall total, recovered am-
plitude is not constant. There is a dim spot under Utah and Arizona
which we suspect is a coverage artifact. In any case, it suggests that
the observed low amplitude in this region seen in Fig. 4 should be
viewed with skepticism.

5 M O D E L L I N G R E S U LT S

5.1 Flat layer model

Fig. 8 shows results comparable to Figs 3 and 5 for the constant
amplitude, flat layer model. Liu (2011) validated that the point scat-
tering model using a dense grid of points located at 410 km depth
yields a nearly identical solution. The main difference is an incon-
sistency between the asymptotic approximation used by Beylkin
& Burridge (1990) and the approximation used in this simulation.
Appendix expands on Liu (2011) to show that unlike the simple
convolution of a wavelet with an impulse response used to generate
Fig. 8, the Born approximation simulation of the same geometry
modifies the wavelet by two terms: (1) convolution with the second
time derivative operator as defined in eq. (6) and (2) integration of
the point source response over the area of the surface. As shown in

Figure 6. Image of widely spaced point scatters using Gaussian pulse. Contour surfaces are computed for scattering potential equal to 0.73 (red), 0.62 (orange)
and 0.48 (yellow), respectively. (a) Contour representation of five point scatters, three of which are at 410 km depth and the other two are at 660 km. Panel
(b) shows the same result as (a) using two parallel slices to illustrate more details of how well we recover the point source geometry. The two vertical slices
intersect at the nearest point scatter position at 410 km depth. The colour scale of the slices is the same as the coloured isosurfaces in (a).
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Figure 7. Checkerboard resolution test. Both parts are a 3-D view of slice made at 410 km depth viewed from directly above the center of the image volume.
Panel (a) illustrates the original, alternating sign perturbation (checkerboard) model and panel (b) shows the amplitude estimated with the plane wave migration
method. Geographic perspective is provided by coastline and state boundary date drawn at a depth of 410 km. The bounding box for the entire image is a
spherical shell seen as the white lines around the boundaries of the image. The size of each cell is approximately 156 km.

Figure 8. Flat layer simulation amplitude measurements. All components are amplitudes estimated by plane wave migration using the flat layer method to
simulate the USArray data geometry. Panel (a) shows relative amplitudes for the radial and panel (b) shows relative amplitudes for the transverse component of
the image volume. These are directly comparable to Fig. 3 and use the same colour scaling. Panel (c) shows the amplitude ratio between estimated transverse
and radial components and is directly comparable to Fig. 5 including the same colour scale. For this example we did not apply a smoother and display the raw
amplitudes at each grid point in the original image volume with a symbol coloured by the scale shown in the legend for each part of the figure.

the appendix the latter yields an operator somewhat like the Hilbert
transform whose net effect is to approximately integrate the wavelet
in the vertical direction. The net result is that the effective output of
a layer simulation with the Born and ray asymptotic approximations
in the Beylkin & Burridge (1990) formulation is approximately the
time derivative of the incident wavefield. This theoretical detail is
important if this approach is used to match waveforms, but has no
impact on the relative amplitude maps that are the focus of this pa-
per. That is, relative amplitudes recovered from a Born simulation
are virtually indistinguishable from the constant amplitude, flat layer
model.

Fig. 8 is an important result for appraisal of 410 amplitude maps
seen in Figs 3–5. These figures show that if the 410 were perfectly
flat and had a uniform P to S conversion amplitude in the form pre-
dicted by standard isotropic layer theory (e.g. Stein & Wysession
2003, pp. 75–86), the recovered amplitude on the transverse com-
ponent in the data would be tiny compared to the radial component
(Fig. 8). The median ratio for this model is 0.044 with lower and
upper quartiles of 0.0031 and 0.1083, respectively. The actual data
have many points where the ratio approaches unity. Furthermore,

the recovered radial component amplitude (Fig. 8 a) is nearly con-
stant for this simple model. The lower and upper quantiles for the
radial amplitude are –0.4 and 0.6 dB respectively, which is a factor
of 1/20. This is an enormous contrast to Figs 3 and 4 where the
comparable ranges are more than a factor of 10. This indicates the
total scattering power of the 410 discontinuity in the western US
varies by an order of magnitude since this result shows our migra-
tion method accurately recovers relative amplitudes away from the
edges of the image volume.

The only caution revealed by this simulation is in the trans-
verse component relative amplitudes illustrated in Fig. 8(b). We
see that the relative amplitudes on transverse vary as much as that
of the data (Fig. 3). On the other hand, the actual amplitude of
the transverse component is generally tiny compared to the radial
(Fig. 8c). Related simulations in early validation of this code de-
scribed in Pavlis (2011b) can explain this observation. He applied
this imaging method to data simulated with a 3-D elastic modelling
program with a uniform grid of ‘stations’ defined by a decimation
of the finite difference grids. In that situation, away from edges
transverse component amplitudes were many orders of magnitude
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smaller than radial. Hence, we conclude Fig. 8 is another repre-
sentation of the impact of irregular coverage in these data and
the transverse relative amplitudes need to be treated with more
caution.

5.2 Modelling topography

Fig. 9 shows results from simulation of topography on the 410 at a
scale near the lateral resolution limits of the plane wave migration
result. The model geometry can be seen in the recovered topography
of the surface shown in Fig. 9(a). The model is defined by a single
surface centred at a depth of 410 km with an amplitude of 12.5 km
(25 km range) and a wavelength of 3◦ in longitude. Note this means
the actual model has a variable wavelength of approximately 312 km
at 41◦N (307 km at both 51◦N and 31◦N). Half of this wavelength
(156 km) is a useful scale to study the impact of 410 topography
on the data because as Fig. 6 shows this is near the nominal lateral
resolution scale of these data.

This simulation shows several things that help us understand
the real data. First, it gives us confidence that if the 410 were a
single surface we can expect to reasonably resolve topography at the

100 km length scale. Secondly, the presence of topography alone can
partly explain the large amplitude variations seen in the real data.
The scale of relative amplitude fluctuations in this simulation is
approximately 1/3 that of the real data. Furthermore, the amplitude
fluctuations correlate poorly with the topography in the model but
seem more closely linked to variations in the resolution limits seen
in Fig. 7. That is, the areas that look most smeared in that figure seem
to show the lowest amplitudes on both components. We suggest this
can be explained as a smoothing artefact. That is, when the surface
can be resolved we recover amplitudes correctly, but when variations
are near the lateral resolution of the data like this, variations in data
coverage create irregularities in the point resolution functions that
distort local amplitudes.

Although topography alone seems capable of producing the ob-
served amplitude fluctuations, Fig. 9(d) shows this model is not able
to explain the large transverse to radial amplitude observed in the
real data. Furthermore, as Fig. 9 shows the single surface is resolved
to a significantly smaller depth range than what is seen in the real
data. For that reason, the final simulation we show in the next sec-
tion combines both a topographic effect and variable amplitudes in
what we will call an irregular surface model.

Figure 9. Simulation results for 410 topography simulation. These results were generated from model with a sinusoidal variation of the depth to the 410 with
a wavelength of 3◦ and an amplitude of 12.5 km (25 km range). All figures are maps at a depth of 410 km of attributes computed as described in the text. Panel
(a) is recovered depth to the sinusoidal topography model used to generate this simulation. Panels (b) and (c) are estimated relative amplitudes on radial and
transverse components, respectively. Colour scale is the same as Fig. 3. These results all used a median smoother with radius of 20 km.
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5.3 Rough surface model

Fig. 10 illustrates a model of the 410 that has both topography
and amplitude variations smaller than the resolving power of these
data with the plane wave method. It was constructed to evaluate a
hypothesis made earlier by Pavlis (2011a) that these results suggest
that the 410 is an irregular boundary. The model was constructed
from the unsmoothed 3C MAD amplitude (Fig. 4 b) and depths
(Fig. 2) estimates computed from the data. We constructed a grid
with a nominal spacing of 5 km that defines an array of point sources.
At each grid point we set the depth of that source as the depth where
the 3C MAD metric is maximum and we set the shear modulus
perturbation equal to the 3C MAD amplitude estimated from the
data at that point. Both the depth and the shear modulus perturbation
use the same 50 km depth window we used for the real data. As for
the previous simulations the synthetic data were passed through the
same processing sequence as the real data and displayed on a map
in the same projection. Fig. 11 shows the results.

Fig. 11(a) is directly comparable with Fig. 4(b) because the latter
is the Fig. 10 smoothed by the same operator as Fig. 11(a). The
results is encouraging as the main features of the amplitude map

is recovered. That is, we properly recover the north–south oriented,
low amplitude swath running from Arizona to Idaho and we recover
the high amplitude spot under northern California. On the flip side,
the results on inferred depth in this model are terrible. Figs 11(c)
and 2 should be directly comparable, but they have vague similari-
ties at best. On the other hand, this should not be totally surprising.
By design this model has wild variations on short distance scales
(Fig. 10 a) that produce synthetic seismograms with rapid lateral
variations in waveforms. The imaging cannot perfectly focus this
variation because the length scale is shorter than the lateral resolu-
tion of the technique, but because the migration operator amounts to
a weighted stack (Pavlis 2011b) it cannot remove unfocused energy
either. Amplitudes appear to be preserved in this way because we
are smoothing all the results at a scale comparable to resolution of
the migration. Peak measures, on the other hand, are intrinsically
unstable and far more subject of being shifted large distances in
the presence of multiple, interfering wave components. Irregular
amplitudes and positions used to define this model make every sim-
ulated seismogram a superposition of a large number of interfering
signals, so it is not surprising that the peak amplitude measurement
is unstable in this situation.

Figure 10. Rough interface model of 410-km discontinuity. Panel (a) shows depth and panel (b) shows relative perturbation of shear modulus of point sources
used for this simulation. Point source spacing is nominally 5 km. We scale the perturbation (b) relative to the median and display the result in dB to make the
results comparable to the amplitude plots in previous figures. Fig. 4(b) is a function mapped in (b) with a 100 km radius, median smoother applied.

Figure 11. Plane wave imaging results computed from rough model simulation data. All parts of this figure are based on the 3C MAD metric applied on a
50 km depth window and smoothed with a 100 km radius block median operator. Panel (a) shows the recovered amplitude. This should be compared with the
true amplitude map with the same smoother illustrated in Fig. 4(b). (b) displays the transverse to radial ratio. Panel (c) illustrates the estimated depth from this
simulation. This is comparable to Fig. 2(b) which is the same data as 10(a) smoothed by the same operator as all components of this figure.
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6 D I S C U S S I O N

We would assert that this paper has two, complementary elements:
(1) introduction of some new ideas for appraising the reliability of
scattered wave imaging and (2) some new observations on the nature
of the 410. The first is unequivocal and is unlikely to be controver-
sial while the second could prove quite the opposite. For the error
appraisal element of this paper we advocate a general approach that
all future papers that apply any direct wavefield imaging method
could consider. The core idea is to produce simulation data that
duplicate the exact geometry of the data being appraised and run
that simulation data through exactly the same processing sequence
as the real data. The simulation required for this approach must
always have four elements: (1) the source and receiver geometry;
(2) an Earth model of required seismic properties; (3) a scattering
model describing how the scattered wavefield is generated from an
incident wavefield and (4) a propagation model describing wave
propagation from every point in the medium to each source and re-
ceiver. Pavlis (2011a) used this general approach without discussing
the more general concepts we advocate here. He used a flat layer,
primaries-only, P to S scattering model with ray theory propagators.
We extend that approach here to a more flexible approach with a
different set of approximations. We again use a radially symmetric
earth model and ray propagators but used the point source, sin-
gle scattering (Born) approximation model of Beylkin & Burridge
(1990) to model teleseismic P to S conversions. We show how this
basic building block can be used to produce point source migration
impulse response estimates, a scattered wave imaging equivalent
of a checkboard test, and an irregular surface with topography of
various scales. All but the first require integration of point response
functions over a specified surface, which we implemented by a sim-
ple superposition of a large number of point response functions.
The integration process revealed a theoretical anomaly discussed in
Appendix that needs to be recognized if others elect to apply this
approach.

The second element of this paper is the following new observa-
tions on the nature of the 410.

(i) This is the first study to consider the relative amplitude of
P to S conversions from the 410 beneath the USArray. We find
the amplitude of the P to S conversion from the 410 under the
western U.S. varies by at least 18 dB. Flat layer simulation shows
that if the boundary were perfectly flat with a uniform conversion
coefficient the plane wave migration method we applied recovers
the resulting boundary with an amplitude variation of less than 1 dB,
which is tiny compared to the actual data. The observed amplitude
variations show an interesting correlation with inferences made by
Pavlis (2011a) and Pavlis et al. (2012) about the geometry of the
Farallon slab. That is, the amplitude of 410 conversions is lowest
between the 300 and 400 km contours Pavlis (2011a) constructed
for the top of the Farallon plate. The amplitudes are lowest where the
model predicts the material that was once Farallon plate lithosphere
is actively passing through the 410.

(ii) No one has previously considered if there is a significant
signal observed on the transverse component of P to S conversion
data from the 410 recorded on the USArray. We, in fact, find a large
signal recorded on the transverse component. For a large fraction
of the western United States the transverse/radial amplitude ratio
is more than 0.5 with anomalies in the vicinity of Yellowstone
and northern California having ratios close to 1.0. We note this
directly conflicts with the standard, simple model of the 410 found
in freshmen geology textbooks defined by a flat interface separating

two isotropic media. We also find that none of our simulations come
close to simulating the observed transverse/radial amplitudes. We
note, however, that the only simulation that shows a significant
variation at all in the transverse/radial ratio was the long wavelength
topography simulation shown in Fig. 9 where ratios as high as 0.3
were common. Other simulations consistently produce maps with
this ratio everywhere less than 0.1. This suggests topography at
some scale may be a factor in creating the large transverse/radial
amplitudes seen in the real data. This observation is a key piece
of evidence in favour of the rough 410 km interface model we are
proposing here. It is not unambiguous, however, as there are two
alternative hypotheses for explaining this observation we cannot
currently model: (1) an anisotropic but smooth 410 km interface, or
(2) S wave propagators that include the effects of S-wave splitting
known to be present throughout the western U.S. (e.g. Long et al.
2009).

(iii) Following common practice (e.g. Cao & Levander 2010), we
estimated the depth to the 410 from smoothed peak amplitude mea-
surements. The estimates we obtained in this way from the radial
component data are roughly comparable to those obtained previ-
ously with a completely different algorithm by Cao & Levander
(2010). The inferred depth from the radial component (Fig. 2) is
shallow under northern Nevada and the Idaho panhandle but de-
pressed under Arizona. We note, however, that Fig. 2(b) produced
a significantly different result from the total amplitude on all three
components. This is undoubtedly a secondary result of the large
transverse amplitude we estimate from these data. The 3C topog-
raphy estimate has strong similarities to the 3C relative amplitude
maps seen in Fig. 4. That is, areas of low amplitude correlate strongly
with areas of elevated topography. Given that this low amplitude re-
gion is the same area we noted in item 1 which can be linked to
the Farallon plate, it supports a model of elevation of the 410 in
a region of downwelling created by North America moving over
the Farallon plate. Our simulation results confirm that our imaging
method is capable of resolving topography of the 410 at 200+ km
length scales, but as expected the measurement is less stable than
amplitude (Fig. 9).

What do these observations imply about the nature of the 410?
We can unambiguously say that beneath the Cordillera of the United
States it is definitely not a single, flat interface separating two
isotropic media with uniform properties. The flat layer simulations
shown here and previously by Pavlis (2011b) make this claim diffi-
cult to challenge. Instead, the example image shown in Fig. 12 along
with comparable images in Pavlis et al. (2012) indicate that the 410
is much more complex and may contain a wealth of unexploited
information about the nature of the upper mantle. The amplitude
from the conversion is highly variable. It sometimes appears sharp
and other times diffuse. Furthermore, it does not seem to generate
only P to S conversions in the classic P–SV plane (radial direction),
but we record large amplitudes in the transverse direction. Finally,
our results suggest the very concept of the ‘topography’ of the 410
as a single surface may be outdated with the resolution made pos-
sible by the USArray and our plane wave migration method. Our
results, in fact, suggest the 410 is better viewed as a highly irregular
scattering zone with roughness on a range of scales. Our results
reinforce strongly the following statement made in a recent paper
by Tibi & Wiens (2005): ‘This suggests that the 410-km disconti-
nuity may be a more complex feature than previously thought, and
current models to explain it are too simplistic.’

If indeed current models are ‘too simplistic’, we suggest most
people have a simplistic view for the same reasons we did as
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Figure 12. Comparison of section through 3-D migration of real and simulation data sets. All parts of the figure are a common cross-section in true 3-D
geometry viewed perpendicular to the line of the section from a view point around central America. The section is approximately the same as section CC’ of
Pavlis et al. (2012) running from near Cape Mendocino in California to northern Minnesota. Geographic data are projected and drawn at a depth of 400 km in
white. The dashed lines following the curvature of the earth are a 50-km-wide band centered at 410 km depth. The heavier dashed curve is the model for the
top of the Farallon slab described by Pavlis et al. (2012). In each section shows amplitude of radial component, P to S conversion, scattering strength. Panels
(a) and (b) are identical but (b) is true amplitude while (a) has been processed with an automatic gain control operator. The true amplitude data have a scale
of ±10 with rainbow colour map with positive red and negative blue. The crust and upper mantle section is clipped at this scale to focus on the large amplitude
variations that characterize the 410. Panels (c) and (d) are true amplitude sections for two of the simulations described in the text. Panel (c) reconstructed 410
image produced from the flat interface model and (d) is the image produced from the rough surface model. Panels (c) and (d) have the same relative scaling as (b).

newcomers to this subject. That is, we teach students in intro-
ductory geology courses that the 410 is the top of the transition
zone. We show them standard radially symmetric earth models like
PREM and require students to memorize the ‘fact’ that the 410
results from a phase change of olivine. In addition, there is an ex-
tensive literature of papers that argue that the 410 has a thickness
of less than about 5 km because it scatters short-period P waves
(e.g. Benz & Vidale 1993; Vidale et al. 1995; Helffrich 2000; Tibi
& Wiens 2005). This led us, at least, to have a (likely incorrect)
conceptual model of the 410 as a single interface with topography
that was a rough thermometer of mantle temperature. However, as
pointed out as early as 1993 by Benz and Vidale mineral physics
people found observations by seismology that the 410 was sharp
hard to accept (see review paper by Helffrich 2000 for a history
of this controversy). Furthermore, wide-angle refraction/reflection
results on the 410 have consistently argued against a simple inter-
face model. Analysis of data from the Soviet Union’s Deep Seismic
Sounding program (ultra long-range refraction experiments using
nuclear explosions as sources) showed that the 410 can be mod-
elled as a 15–20-km-thick transition zone (Morozova et al. 1999)
or an irregular scattering surface (Thybo et al. 2003). Melbourne
& Helmberger (1988) reached a similar conclusion on the 410 in
the southwestern United States through waveform modelling of a
rare earthquake in western Texas recorded by stations in California.
Thus it seems there have been numerous voices indicating that the
simplified model of the 410 as a single interface with topography
should be viewed skeptically. Instead this study suggests that the
region of the mantle around the 410 may well be a rich mix of unex-

plored phenomena that were previously invisible due to resolution
limitation of all previous methods used to probe this feature. For
example, there is also no reason to think it is not characterized in
places by interleaved sheets of variable properties, particularly in
areas of higher strain rate and/or strong vertical motion (see, for
example, fig. 2 of Solomatov & Stevenson 1994). We speculate that
this could be an explanation for the large transverse/radial ampli-
tude seen in Fig. 5 near Yellowstone and along the predicted edge of
the Farallon slab window linked to the creation of the San Andreas
fault (Dickinson & Snyder 1979). We suggest this could induce
a structural fabric that at these frequencies could behave like an
anisotropic media even without lattice preferred orientation.
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A P P E N D I X A : I N T E G R AT I O N O F P O I N T
S C AT T E R S T O A P P ROX I M AT I O N T O A
D I S C O N T I N U I T Y S U R FA C E

This section addresses a theoretical disconnect between the
point source theory and the more standard theory of reflec-
tion/transmission coefficients based on a singularity in the velocity
and/or density of the medium. The singularity theory predicts a
delta function scattering response, which for the problem addressed
in this paper is commonly called the P to S transmission coeffi-
cient. Yet, the perturbation theory integral formulation in eq. (6)
requires the source wavelet to be modified by a second derivative
in time operator. Here we show this apparent inconsistency is re-
solved in the volume integration. That is, we show that integration
of the point source formula for plane wave illumination over a flat
surface with a finite thickness produces a form comparable to the
delta function response predicted by the standard plane wave, re-
flection/transmission theory.

Eq. (6) gives the form of the vector displacement of P-to-S con-
verted wave that is the core component of our point source simula-
tion method. For this analysis we consider only the scalar value of
the converted wave displacement and neglect the scattering pattern
f PS(θPS). Eq. (6) then reduces to

�u P S(t) =
∫

D
Âb(t) ∗t δ(t − ˜φP − ˆφS) dx dy dz, (A1)
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Figure A1. The response of a very thin horizontal discontinuity layer, the
thickness of which is �z. An integral over the entire discontinuity layer gives
the P-to-S phases on a single station. The discontinuity layer is at z = 0.

where Â = 1
ˆφS

is the geometric spreading amplitude. For this anal-

ysis we assume the source wavelet is a Gaussian wavelet. In that
case b(t) is the 2nd derivative of a Gaussian function which has the
property

∫ T
2

− T
2

b(t)dt = 0. (A2)

Consider the case of a very thin discontinuity layer in the refer-
ence media with thickness �z and uniform perturbation values. In
this case eq. (A1) can be reduced to

�u P S(t) = �z

∫
�

1
ˆφS

b(t) ∗t δ(t − ˜φP − ˆφS) dx dy. (A3)

The total traveltime τ is,

τ = ˜φP + ˆφS

= −px + C0 +
√

(x + r )2 + y2 + z2
r

VS
,

(A4)

where p is the ray parameter for incident P wave and C0 is a constant
for plane P-wave traveltime at the origin (0, 0, 0).

Apply a change of variables from (x,y) to (τ , θ ) and eq. (A4)
becomes

�u P S(t) = �z

∫ ∞

τm

dτ

∫ 2π

0

1

τ − ˜φP
b(t − τ )|J | dθ, (A5)

where θ is the angle when (x,y) is converted to polar coordinates
θ = arctan(y/x) (see Fig. A1). τm = min( ˜φP + ˆφS) is the traveltime
for earliest arrival of scattered wave (Fermat’s principle). J is the
Jacobian matrix,

|J | =
∣∣∣∣∣

∂x
∂τ

∂x
∂θ

∂y
∂τ

∂y
∂θ

∣∣∣∣∣ = 2V 2
S (τ − ˜φP )√
1 − V 2

S p2
. (A6)

Substituting |J| into eq. (A5) and integrating over θ , we get

�u P S(t) = �z

∫ ∞

τm

4πV 2
S√

1 − V 2
S p2

b(t − τ ) dτ. (A7)

Eq. (A7) shows that a thin discontinuity layer produces scattered
phases comparable to the time integral of the 2nd derivative of Gaus-
sian wavelet b(t), or equivalently the first derivative of a Gaussian
wavelet.

Now we generalize eq. (A7) to approximate the scattered wave
produced by the interface between two layers. Applying the law of
superposition, we divide the upper layer into many infinitely thin

Figure A2. The P-to-S scattering response of an interface between two layers. An integral over the upper layer gives the P-to-S phases on a single station. The
depth of the interface is at z = 0. The superposition of thin discontinuity layer responses at depth from z = −zr to z = 0 gives the response of an interface.
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horizontal slices at different depths. For each thin slice, the scattered
P-to-S phase can be computed from eq. (A7). We define

f (t − τm) =
∫ ∞

τm

4πV 2
S2√

1 − V 2
S2 p2

b(t − τ ) dτ, (A8)

where VS2 is the shear wave velocity in the upper layer (Fig. A2).
According to Snell’s law, the incident P wave and converted S

wave ray paths that correspond to the least traveltime τm have the
same ray parameter. Therefore, τm is a linear affine function of the
horizontal slice depth z,

τm = min( ˜φP + ˆφS) = kz + C. (A9)

As a result, the scattered wavefield displacement generated by
the upper layer is

u P S(t) =
∫ 0

−zr

f (t − τm)dz =
∫ τm1

τm0

1

k
f (t − τm) dτm, (A10)

where k is a constant, τm1 = C is the least traveltime for scattered
phases generated by the interface between two layers, and we make
τm0 = −kzr + C < −T/2 and t > 0.

From eq. (A2) and the fact that b(t) is the 2nd deriva-
tive of a Gaussian function, we derive that f(t) is also
DC-balanced,

∫ T
2

− T
2

f (t) dt = 0. (A11)

Combining eq. (A10) and (A11), we arrive at

u P S(t) 	= 0 if and only if ∈
(

τm1 − T

2
, τm1 + T

2

)
(A12)

and uPS(t) is the double time integral of b(t), the 2nd derivative of
a Gaussian function. Therefore, uPS(t) is a good estimation of the
P-to-S displacement field produced by an interface analogous to
410 discontinuity.

This derivation indicates that theoretically the integration of point
scatters on a subsurface could approximate a thin discontinuity
surface, and a similar integral over a volume with a finite thickness
is a good approximation to the response of an interface between two
layers.
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